Category Archives: diet

Domestication rates in cereal and pulse crops

Contrasting Patterns in Crop Domestication and Domestication Rates: Recent Archaeobotanical Insights from the Old World
Dorian Q Fuller*
Institute of Archaeology, University College London, 31–34 Gordon Square, London WC1H 0PY, UK

Received: 20 September 2006   
   Background: Archaeobotany, the study of plant remains from sites of ancient human activity, provides data for studying the initial evolution of domesticated plants. An important background to this is defining the domestication syndrome, those traits by which domesticated plants differ from wild relatives. These traits include features that have been selected under the conditions of cultivation. From archaeological remains the easiest traits to study are seed size and in cereal crops the loss of natural seed dispersal.

Scope: The rate at which these features evolved and the ordering in which they evolved can now be documented for a few crops of Asia and Africa. This paper explores this in einkorn wheat (Triticum monococcum) and barley (Hordeum vulgare) from the Near East, rice (Oryza sativa) from China, mung (Vigna radiata) and urd (Vigna mungo) beans from India, and pearl millet (Pennisetum glaucum) from west Africa. Brief reference is made to similar data on lentils (Lens culinaris), peas (Pisum sativum), soybean (Glycine max) and adzuki bean (Vigna angularis). Available quantitative data from archaeological finds are compiled to explore changes with domestication. The disjunction in cereals between seed size increase and dispersal is explored, and rates at which these features evolved are estimated from archaeobotanical data. Contrasts between crops, especially between cereals and pulses, are examined.

Conclusions: These data suggest that in domesticated grasses, changes in grain size and shape evolved prior to non-shattering ears or panicles. Initial grain size increases may have evolved during the first centuries of cultivation, within perhaps 500–1000 years. Non-shattering infructescences were much slower, becoming fixed about 1000–2000 years later. This suggests a need to reconsider the role of sickle harvesting in domestication. Pulses, by contrast, do not show evidence for seed size increase in relation to the earliest cultivation, and seed size increase may be delayed by 2000–4000 years. This implies that conditions that were sufficient to select for larger seed size in Poaceae were not sufficient in Fabaceae. It is proposed that animal-drawn ploughs (or ards) provided the selection pressure for larger seeds in legumes. This implies different thresholds of selective pressure, for example in relation to differing seed ontogenetics and underlying genetic architecture in these families. Pearl millet (Pennisetum glaucum) may show some similarities to the pulses in terms of a lag-time before truly larger-grained forms evolved.

As I recall, the lentils at Franchthi cave were just slightly bigger than wild lentils, suggesting that the 13,500 date for domestication could be push back possibly as much as 17,000 BP ( I’d say 15,000 BP was more likely). I’d seriously recommend reading this whole paper through if you are interested in the process of domestication of crops. It includes some Indian beans, rice, as well as African pearl millet, and is about the most comprehensive paper I’ve seen on the subject.

It also names the South Asian location of rice domestication as the middle of the Ganges valley, and has some very useful graphs showing the levels of domestication in various near Eastern sites. It suggests that an increase in seed size in cereals is evident for quite some time before a non shattering rachis is selected in. One interesting fact didn’t know was that millet was much more widely grown in China about 8,000 years ago than rice. One to read a couple of times through.

FIG. 1. An evolutionary model from foraging to agriculture, with archaeobotanical expectations indicated at the bottom (modified from Harris, 1989). The stages of pre-domestication cultivation are shaded. In this version, domestication is represented as a process of gradual frequency change, with an earlier, more rapid ‘semi-domestication’ and a later, slower fixation of full domestication. The gap in time elapsed between these two can be taken as a minimal estimate of domestication rate (d.r.).

FIG. 2. Map of south-west Asia, showing the locations of sites with archaeobotanical evidence that contributes to understanding the origins and spread of agriculture. Sites are differentiated on the basis of whether they provide evidence for pre-domestication cultivation, enlarged grains, mixed or predominantly domestic-type rachis data. Note that these sites represent a range of periods, and many sites have multiple phases of use, in which case the earliest phase with significant archaeobotanical data is represented. Shaded areas indicate the general distribution of wild progenitors (based on Zohary and Hopf, 2000, with some refinements from Willcox, 2005). It should be noted that wild emmer (Triticum dicoccoides) occurs over a sub-set of the wild barley zone, and mainly in the western part of the crescent.
Archaeological evidence indicates that the entire domestication syndrome did not suddenly appear when people began to cultivate plants. Rather, different aspects of the syndrome evolved in response to the new ecological conditions of early cultivation. What these data suggest is that in domesticated grasses, changes in grain size and shape (‘semi-domestication’) evolved prior to non-shattering ears or panicles (‘domestication’ sensu stricto). While initial grain size increases may have evolved during the first centuries of cultivation, within perhaps 500–1000 years, non-shattering was much slower, becoming fixed about 1000–2000 years subsequently. Pulses by contrast do not show evidence for seed size increase in relation to the earliest cultivation, but seed size increase may be delayed by 2000–4000 years. This implies that conditions that were sufficient to select for larger seed-size in Poaceae were not sufficient in Fabaceae. This implies different thresholds of selective pressure in relation to differing seed ontogenetics and underlying genetic architecture in these families. Pearl millet (Pennisetum glaucum) may show some similarities to the pulses in terms of a lag-time before truly larger-grained forms evolved. These results may aid in predicting when and where certain crop domestications are likely to have occurred based on counting backwards from the earliest known domestic finds. Thus, for example, we would predict that pearl millet cultivation began by 3200–2700 BC. These results also raise questions about taxonomically linked differences in evolution under the selection forces of cultivation.

Reconsidering sickles and cereal domestication
There has been a tendency to assume that harvesting with a sickle was the selective force that led to domestication, i.e. non-shattering (as discussed above). The archaeological evidence, however, does not support this in any documented case. In China, as discussed already, rice grains begin to plump and increase in size but domestication is indicated by the shift towards predominantly mature-grained harvests (and inferred non-shattering), during the fifth millennium BC, and by approx. 4000 BC. In this region there are no clear archaeological sickles until after 3500 BC, the Later Songze period (approx. 3500 BC), after which they become widespread in the Liangzhu culture (3300–2200 BC). These sickles may be a cultural borrowing from millet cultivators in central China, where such tools were in use since at least 5000 BC (cf. Chang, 1986). Even in central and northern China, the earliest sickles occur at sites that already have millet cultivation, and earliest documented domestic millets from Xinglonggou (near Chifeng, China), before 6000 BC (Zhao, 2005), come from a culture without sickles. In China, sickles consistently represent a technology development after domesticated plants are fully established.

In the Near East sickles were in use prior to agriculture and must now be argued to be transferred to agriculture relatively late, after domestication. Preserved sickles, and more commonly lithic sickle blades, are known from Natufian contexts (13 000–10 500 BC), in a period for which there is no evidence for domesticates, and non-shattering domesticates continued to be absent through the PPNA (through 8800 BC) (see Fig. 3). Microscopic studies of ‘sickle gloss’ have been used to suggest they were cereal-harvesting (Unger-Hamilton, 1989; Anderson, 1992), but we cannot rule out harvesting of sedges (Cyperaceae) and reeds (Phragmites) as materials for basketry or thatching. As suggested by Sauer (1958), the early Natufian sickles were prototype saws, designed for raw material gathering rather than seed collecting. As indicated by the archaeobotanical evidence reviewed above, the rate of evolution of tough rachis einkorn and barley is far too slow to be accounted for by a model of strong selective pressure that would be expected if sickling was carried out regularly, as modelled by Hillman and Davies (1990). Thus, it would appear that early cultivators continued to employ the time-efficient harvesting methods associated with hunter-gatherers. Once cultivated, and populations had noticeably large proportions (majorities) of non-shattering types, then the transfer of the sickle technology to agriculture may have been seen as an obvious enhancement. In evolutionary terms the sickle is thus an ‘exaptation’ (sensu Gould and Vrba, 1982), in that it developed for some other purpose, and was later transferred to crop-harvesting of already domesticated crops.

I would propose alternative explanations for the selection of domesticated-type crops that can account for the slow creep towards domestication. As others have noted, the harvesting of cereals when green, i.e. immature, regardless of technique, will not select for domesticated types (Hillman and Davies, 1990; Willcox, 1999). Harvesting green, however, may not provide full returns from a given stand of crops, as additional seeds (including late tillers) may form and approach maturation subsequent to the harvest. For the early farmers, who have invested significant labour into a restricted unit of land, it becomes important to maximize returns from that unit of land (as noted by Hillman and Davies, 1990: 69; Bar-Yosef, 1998). This may encourage multiple episodes of harvest. Later harvestings, whether by plucking or beating, will encounter domesticated genotypes in a higher frequency than earlier harvests. If, as an aspect of random variation, some farming households choose to store the late harvest as seed for sowing the following year, those fields so sown will start an increase in the domesticated type. Other households, however, may store for sowing their earlier harvests. Therefore, taken at the level of a human community, or on a regional scale, there might be only a very small proportion of sown crop that had some selection for the domesticated type. Such a model might therefore account for significantly longer periods involved in the fixation of non-shattering types in cultivated populations. By contrast, every farmer and every sown population would be under selective pressure to germinate rapidly, leading to seed size increase and loss of germination inhibitors. Similarly, natural selection for dispersal aids such as awns will be uniformly reduced. Thus, we should expect these ‘semi-domestication’ traits to evolve more rapidly.

Domestication as an interdisciplinary study of evolution
Domestication in plants is not one thing, nor has it been one uniform process. While there are recurrent parallels, due to the same selective pressures of cultivation, different domestication traits have evolved at different rates and these have varied markedly across families, such as between cereals and legumes. Further archaeobotanical research will help to pin down the actual rates at which different domesticates evolved, and needs to be expanded to address a larger range of species. The archaeological record also provides insights into what people are doing during this evolutionary process in terms of their technologies and ecological adaptations. Understanding past domestications is an exciting area of interdisciplinary investigation, between archaeologists and plant scientists, which may offer insights relevant to future directions in the evolution of crops under human manipulation.

Did nutrition cause the Flynn effect on IQ?

What has caused the Flynn effect? Secular increases in the Development Quotients of infants

Richard Lynn

aUniversity of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK

Received 23 March 2008;  revised 17 July 2008;  accepted 17 July 2008.  Available online 21 September 2008.
Results of five studies show that during the second half of the twentieth century there were increases in the Development Quotients (DQs) of infants in the first two years of life. These gains were obtained for the Bayley Scales in the United States and Australia, and for the Griffiths Test in Britain. The average of 19 data points is a DQ gain of approximately 3.7 DQ points per decade. Similar gains of approximately 3.9 IQ points per decade have been present among pre-school children aged 4–6 years. These gains are about the same as the IQ gains of school age students and adults on the Wechsler and Binet tests. This suggests that the same factor has been responsible for all these secular gains. This rules out improvements in education, greater test sophistication, etc. and most of the other factors that have been proposed to explain the Flynn effect. It is proposed that the most probable factor has been improvements in pre-natal and early post-natal nutrition

More from professor Lynn; a bit of an ass at times, but not stupid. This suggests that most of the IQ gains made through the 20th century a mainly attributable to better nutrition (we are about 30 points smarter than we used to be in the Victorian era).

This would also be another kick in the teeth for the ‘environment only’ supporters who believe we are all born the same, but our IQ’s vary solely from environmental factors. Generally malnutrition isn’t common even among the poorest groups in the West, so this makes most IQ differences you see between individuals due to genetics. The current estimate of heritability is 70% ish, with most of the 30% being nutrition and infantile stimulation. I’d like to see a study of vegetarian/vegan children to see if they compare well to omnivores.

Oldest agriculture in Northern Atlantic Spain.

The oldest agriculture in northern Atlantic Spain: new evidence from El Mirón Cave (Ramales de la Victoria, Cantabria)

Leonor Peña-Chocarroa, Lydia Zapatab, Maria Jose Iriarteb, Manuel González Moralesc and Lawrence Guy Strausd, ,

aLaboratorio de Arqueobotánica, Instituto de Historia, CSIC, C/ Duque de Medinaceli 6, 28014 Madrid, Spain bArea de Prehistoria, Universidad del Pais Vasco, 01006 Vitoria-Gasteiz, Spain cInstituto de Prehistoria, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain dDepartment of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA

Received 2 November 2004;  revised 2 December 2004.  Available online 16 February 2005.

Emmer wheat (Triticum diccocum) has been positively identified from the stratigraphically oldest ceramic- and domesticated livestock-bearing level of El Mirón Cave in the Cantabrian Cordillera. The grain is AMS 14C-dated to 5550±40 BP. This date is congruent with six others from the same layer, higher within which were found other grains of wheat, including einkorn as well as emmer. Although wild ungulates (mainly red deer) were still hunted, abundant ovicaprines, together with small numbers of cattle and pigs, appear in this level-for the first time in the 40,000-year record at El Mirón. Potsherds (undecorated, but of very good quality) also appear abruptly and abundantly. However, the associated lithic assemblage contains specific tool types also found in late Mesolithic contexts in Cantabrian Spain. In addition to the full suite of Neolithic indicators at El Mirón, as confirmed by less unambiguous early agro-pastoral evidence from other sites in the Vasco-Cantabrian region, there are megalithic monuments both in the vicinity of the cave and throughout the region that are similarly dated. All these data tend to suggest that Neolithic adaptations—already present about a millennium earlier not only along the Mediterranean coast, but also much closer, to the southeast of the Cordillera—were quickly adopted as “a package” by Cantabrian Mesolithic foragers, possibly as a consequence of social contacts with Neolithic groups in southern France and/or the upper Ebro basin of north-central Spain.

Stone-age pilgrims ‘held barbecues at Stonehenge’

Stone-age visitors to the site of Britain’s most famous historical monument held “bring your own barbecues”, new research has revealed.
By Richard Gray, Science Correspondent
10 Sep 2008

Cattle were brought to Stonehenge from as far as Wales and even the Scottish Highlands Photo: Analysis of animal remains found near to Stonehenge has shown that cattle were brought to the area from as far away as Wales or even the Scottish Highlands.

Scientists tested the chemical fingerprint of cattle teeth found at Durrington Walls, a Neolithic monument built 500 years before Stonehenge.

They found that far from being local, the animals could only have been reared in areas of Wales or Scotland, which have high levels of the chemical element strontium in the soil.

It suggests that the area around Stonehenge was already an important national site long before the famous stone circle was erected and attracted pilgrims from all over the British Isles.

Dr Jane Evans, from the British Geological Survey who carried out the research, said: “It looks like people were driving cattle to the area from a significant distance away.

“The area must have been an important place for rituals and gatherings long before the first stones were laid at Stonehenge itself.

“People are coming from considerable distances and dispersion in order to have feasts and were bringing their own food supplies for what must have been a kind of bring your own beef barbecue.”

Durrington Walls 500 metre wide circular earthwork that was studded with wooden posts and dates back to more than 3,000BC.

Stonehenge was not built until around 2,500 BC.

Large numbers of animal remains have been found at the site suggesting it was a hotspot for feasts.

Speaking at the British Association for the Advancement of Science, Dr Evans explained they used teeth to examine where the cattle had come from because they absorbed strontium from soil through the grass they ate in the same way as teeth absorb calcium from food.

Different types of strontium, known as isotopes, are found in different geological areas of the country.

The nearest match to those found at the Durrington site were extremely old rocks found in Wales and the Highlands.

Saw it on Dienekes blog, which I shamelessly mine for info once a month.

Animal domestication is older than previously thought

NY times article

Like this surprises me much, I’ve said before that it was older than claimed. At least this map agrees with my points of domestication (I did something similar a few months ago). I’ve always maintained Southern Turkey was the origin point of the Western Neolithic revolution.

The invention of agriculture was a pivotal event in human history, but archaeologists studying its origins may have made a simple error in dating the domestication of animals like sheep and goats. The signal of the process, they believed, was the first appearance in the archaeological record of smaller boned animals. But in fact this reflects just a switch to culling females, which are smaller than males, concludes Melinda Zeder, an archaeologist at the Smithsonian Institution.

Using a different criterion, that of when herds first show signs of human management, Dr. Zeder finds that goats and sheep were first domesticated about 11,000 years ago, much earlier than previously thought, with pigs and cattle following shortly afterwards. The map, from her article in the August 11 issue of the Proceedings of the National Academy of Sciences, shows the regions and dates where the four species were first domesticated. Other dates, color-coded as to species, show where domesticated animals first appear elsewhere in the Fertile Crescent.

The earlier dates mean that animals were domesticated at much the same time as crop plants, and bear on the issue of how this ensemble of new agricultural species – the farming package known as the Neolithic revolution – spread from the Near East to Europe.

Some experts say the technology spread by cultural diffusion, others that the first farmers themselves moved into Europe, bringing their new technology with them and displacing the resident hunter gatherers.

Dr. Zeder concludes that both processes were involved. A test case is the island of Cyprus, where the four domesticated species of livestock appear as early as 10,500 years ago, replacing native fauna such as pygmy elephants and pygmy hippopotamuses (large animals often get downsized in island settings).

Since Cyprus lies 60 kilometers off the Turkish coast, the suite of agricultural species must have been brought there on boats by the new farmers. That establishes one episode of colonization, and Dr. Zeder sees evidence for several others. The second map shows, in red circles, the dates when farming colonists’ enclaves were set up around the Mediterranean.

Dr. Zeder believes that in France and Spain the indigenous hunter gatherers adopted the new farming technology by cultural diffusion (shown as green dots). The farmers themselves settled the regions that are now Turkey and the Balkans (red dots) but in surrounding areas they integrated with indigenous peoples (blue dots).

Dr. Zeder says her evidence indicates that several waves of settlers spread the new farming technology through the Mediterranean. It’s yet not known what drove the expansion, or what the relationship was between the colonists and the native inhabitants. Studies of ancient DNA, she said, may help test her thesis that farming spread through a mix of colonization and cultural diffusion.

The logic that is used to observe the livestock arriving in Cyprus is similar to my dating of agriculture arriving at Francthi cave; essentially multiple crop plants make a simulaneous appearance in Francthi cave about 11,000 years ago (500 years before cereals are seen).

A nicely dated map/timeline of the expansion of farming (well, it’s a bit out, as Francthi in Greece was 11,000 BP)

I’m feeling moderately smug now. Told ‘em so.

Neanderthals were mainly carnivores.

Neanderthal diet at Vindija and Neanderthal predation: The evidence from stable isotopes

Archeological analysis of faunal remains and of lithic and bone tools has suggested that hunting of medium to large mammals was a major element of Neanderthal subsistence. Plant foods are almost invisible in the archeological record, and it is impossible to estimate accurately their dietary importance. However, stable isotope (δ13C and δ15N) analysis of mammal bone collagen provides a direct measure of diet and has been applied to two Neanderthals and various faunal species from Vindija Cave, Croatia. The isotope evidence overwhelmingly points to the Neanderthals behaving as top-level carnivores, obtaining almost all of their dietary protein from animal sources. Earlier Neanderthals in France and Belgium have yielded similar results, and a pattern of European Neanderthal adaptation as carnivores is emerging. These data reinforce current taphonomic assessments of associated faunal elements and make it unlikely that the Neanderthals were acquiring animal protein principally through scavenging. Instead, these findings portray them as effective predators.

Summary and Conclusions
Isotope analyses of two Neanderthals and associated fauna from Vindija Cave, Croatia, have indicated that the bulk of their dietary protein came from animal sources. Comparison with faunal remains from this and other sites of similar age indicates that the Vindija Neanderthal isotope values were similar to those of other carnivores. These results are very close to the results for earlier Late Pleistocene Neanderthals from France and Belgium.

Therefore, the emerging picture of the European Neanderthal diet indicates that although physiologically they were presumably omnivores, they behaved as carnivores, with animal protein being the main source of dietary protein. This finding is in agreement with the indirect archeological evidence and strongly points to the Neanderthals having been active predators.

This doesn’t mention that modern humans at that time also ate something like 70% flesh calorie diets, as do modern hunter gatherers, so this doesn’t make the Neanderthals (at about 90%) vastly different to ancient humans. However, this carnivorous life would have had some effects on the Neanderthal metabolism. This diet of nearly solid red meat would have been very gout inducing, so Neanderthals may have had a more efficient method of removing excess uric acid from their blood. Interestingly, in many carnivores uric acid is the antioxidant of choice. In modern humans low uric acid levels have been implicated in neuro-degenerative illnesses like multiple sclerosis and Alzheimer’s disease.

This would also have meant Neanderthals would probably have a very poor tolerance to sugar, and a carbohydrate based diet (such as was adopted in the Neolithic) would have caused serious health problem as well as infertility. Even swapping over to the early modern human diet of about 30% carbs could have caused serious health problems to a mainly carnivorous human (diabetes, infertility, obesity).

I’m guessing Neanderthal teeth weren’t particularly well designed to cope with grinding tough plant fibres if all they ate was meat, and the tooth enamel probably wouldn’t be as resistant to fruit acids and sugars.

Neolithic cheese making in Europe.

Neolithic Europeans Made Cheese and Yoghurt
By Jennifer Viegas, Discovery News Jan. 24, 2006.

Dirty cooking pots dating to nearly 8,000 years ago reveal that some of Europe’s earliest farming communities produced dairy products, such as cheese and yogurt.

Two separate studies indicate that Neolithic dairying took place in what are now Romania, Hungary and Switzerland.  The discoveries suggest people in these regions might have originally learned how to process milk-based foods from Asian farmers.

“From a diffusionist perspective, these findings lend support to the idea that the antiquity of dairying lies with the origins of animal domestication in southwest Asia some two millennia earlier, prior to its transmission to Europe in the seventh millennia B.C., rather than it being a later and entirely European innovation,” wrote Oliver Craig, a scientist at Tor Vergata University in Rome, and colleagues in the first study published in the journal Antiquity.

Craig and his team studied fatty residues stuck on ceramic cooking vessels found at the left bank of the Danube near Romania and at the Great Hungarian Plain. The dirty pots date from 5,950-5500 B.C. Analysis of the fats suggests they belonged to goat or sheep milk.

Jorge Spangenberg, a geochemist at the University of Lausanne in Switzerland, indicated to Discovery News that he agreed early dairying took place.

In another paper published in the current Journal of Archaeological Science, Spangenberg and his team conducted a similar study on dirty cooking pot shards found at a site called Arbon Bleiche 3 on the southwestern shore of Lake Constance in Switzerland. The shards date to 3384-3370 B.C.

The Swiss scientists compared the carbon and nitrogen isotope signatures of the residues with those of fats found in today’s organic milks and cheeses. The residue signatures closely matched those for cow, goat and sheep milk.  Since the pots have darkened, sooty undersides from apparent placement over
fires, the researchers believe the milk was cooked and otherwise processed to keep it fresh and consumable.

“Freshly milked milk has a short life,” Spangenberg explained. “After leaving the ruminant (grazing animal) udder, milk quickly becomes colonized with bacteria, mainly lactobacilli. We therefore speculate that the
Neolithic settlers at Arbon were consuming fermented milks and making relatively long-life milk products from fermented milks, such as today’s buttermilk, yogurt, butter and cheese, which could be stored and consumed at much later dates.”

The researchers theorized that the cheese would have been similar to modern fresh goat cheese and farmer’s cheese. Sour cream also likely was produced.

Bones that belonged to domestic cows, pigs, goats, sheep and dogs also were found at the Swiss site where numerous individual family farms appear to have been located around 6,000 years ago.

Stefanie Jacomet, a professor in the Institute for Prehistory and Archaeological Science at Basel University in Switzerland, worked with Spangenberg and Jörge Schibler on the study.

She told Discovery News that the early Europeans likely did not sell or trade their dairy products with outside groups, but instead made them for their own families and communities.

“Based on the herd size, we suggest that this was a subsistence economy, and that the village was not able to produce surplus,” she said.

The villagers seemed to have eaten well, however. In addition to the animal bones, several fish bones also were excavated at the site, along with evidence for hazelnuts, strawberries, blackberries, raspberries, crab apples and sloe plums.

In terms of dairying, little seems to have changed.

Spangenberg said, “Currently there are still approximately 24,000 farms in the Lake Constance region, most of them with dairy cows.”

Along with the study the news item mentions..

Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland : evidence for dairying in the late Neolithic

Fatty acids distribution and stable isotope ratios (bulk δ13C, δ15N and δ13C of individual fatty acids) of organic residues from 30 potsherds have been used to get further insights into the diet at the Late Neolithic (3384-3370 BC) site of Arbon Bleiche 3, Switzerland. The results are compared with modern equivalents of animal and vegetable fats, which may have been consumed in a mixed ecology community having agrarian, breeding, shepherd, gathering, hunting, and fishing activities. The used combined chemical and isotopic approach provides valuable information to complement archaeological indirect evidence about the dietary trends obtained from the analysis of faunal and plant remains. The small variations of the δ13C and δ15N values within the range expected for degraded animal and plant tissues, is consistent with the archaeological evidence of animals, whose subsistence was mainly based on C3 plants. The overall fatty acid composition and the stable carbon isotopic compositions of palmitic, stearic and oleic acids of the organic residues indicate that the studied Arbon Bleiche 3 sherds contain fat residues of plant and animal origin, most likely ruminant (bovine and ovine). In several vessels the presence of milk residues provides direct evidence for dairying during the late Neolithic in central Europe.

Cattle dairying at least 6,000 years old in Europe.

Direct evidence for the existence of dairying farms in prehistoric Central Europe (4th millennium BC).

Spangenberg JE, Matuschik I, Jacomet S, Schibler J.

Institute of Mineralogy and Geochemistry, University of Lausanne, Lausanne, Switzerland.

The molecular and isotopic chemistry of organic residues from archaeological potsherds was used to obtain further insight into the dietary trends and economies at the Constance lake-shore Neolithic settlements. The archaeological organic residues from the Early Late Neolithic (3922-3902 BC) site Hornstaad-Hornle IA/Germany are, at present, the oldest archaeological samples analysed at the Institute of Mineralogy and Geochemistry of the University of Lausanne. The approach includes (13)C/(12)C and (15)N/(14)N ratios of the bulk organic residues, fatty acids distribution and (13)C/(12)C ratios of individual fatty acids. The results are compared with those obtained from the over 500 years younger Neolithic (3384-3370 BC) settlement of Arbon Bleiche 3/Switzerland and with samples of modern vegetable oils and fat of animals that have been fed exclusively on C(3) forage grasses. The overall fatty acid composition (C(9) to C(24) range, maximizing at C(14) and C(16)), the bulk (13)C/(12)C and (15)N/(14)N ratios (delta(13)C, delta(15)N) and the (13)C/(12)C ratios of palmitic (C(16:0)), stearic (C(18:0)) and oleic acids (C(18:1)) of the organic residues indicate that most of the studied samples (25 from 47 samples and 5 from 41 in the delta(13)C(18:0) vs. delta(13)C(16:0) and delta(13)C(18:0) vs. delta(13)C(18:1) diagrams, respectively) from Hornstaad-Hornle IA and Arbon Bleiche 3 sherds contain fat residues of pre-industrial ruminant milk, and young suckling calf/lamb adipose. These data provide direct proof of milk and meat (mainly from young suckling calves) consumption and farming practices for a sustainable dairying in Neolithic villages in central Europe around 4000 BC.dagger.

However, it seems that sheep and goat dairying practises predate this. I was wondering how the gene for lactase persistence could have spread without a milk drinking culture, then the light finally dawned and I realised that goats made it into Northern Europe a lot earlier!

The domestication of sheep,

An Anatolian wild sheep. Looks a lot like a goat.

Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events

Archaeological data suggest two different areas with independent sheep domestication events in Turkey: the upper Euphrates valley in eastern Turkey, where the most important reference is the Nevali Cori settlement, considered the oldest domestication site in the Near East and Central Anatolia (particularly, the Catal höyük and Asikli höyük sites.

 Archaeological data from Early Neolithic human settlements distant from one another throughout the Near East support the occurrence of independent domestication events in this area. The first region of importance, with the oldest human settlements in the Near East (Nevali Cori and Çayönü Tepesi), is dated about 8500 BC and located in the upper Euphrates valley in eastern Turkey, near the northern arc of the so-called Fertile Crescent . The Zagros region of modern day Iran and Iraq is also recognized as a primary centre of sheep domestication . In central Anatolia, the Asikli Höyük and Çatalhöyük sites have also revealed morphologically domestic caprines . Finally, the Southern Levant region of southern Syria, western Jordan and Israel has also been suggested as a centre of sheep domestication. Actually, the first two regions, the upper Euphrates valley and Zagros were proposed by  as the origin of two out of the three goat lineages, presumably rising from independent domestications.

On the basis of all this, the multiple sheep maternal lineages revealed in our study suggest that the process of sheep domestication was more complex than previously thought. Estimated divergence time, long before domestication dating (around 8000 BC), suggests that at least three independent domestication events were involved in the origin of modern domestic sheep.

So it seems sheep were domesticated in multiple locations.

The domestication of the goat, another first from Neolithic Turkey.

Science News,  Oct 14, 2006  by B. Bower

Present-day domestic goats may look humble, but they harbor more genetic diversity than any other livestock species. In fact, analyses of goats’ mitochondrial DNA have shown that these animals evolved through five distinct maternal lines that spread from the Near East and central Asia across Europe.

A new study indicates that goats representing the earliest two of the five genetic lines inhabited the same location in southwestern Europe by about 7,000 years ago, only 3,000 years after the initial domestication of the animals in the Near East.

This ancient genetic diversity in a region far from the goat strains’ origins reflects the long-distance transport of goats from the Near East by European pioneers soon after the origins of animal domestication, farming, and village life, say geneticist Pierre Taberlet of Joseph Fourier University in Grenoble, France, and his colleagues in an upcoming Proceedings of the National Academy of Sciences.

Today’s other three genetic lines arose later in parts of central Asia, Taberlet’s group proposes.

The scientists analyzed mitochondrial DNA retrieved from 19 goat bones found at an ancient farming site in southern France. Other researchers had excavated these fossils about 20 years ago in soil that contained the remains of more than 5,000 animals, including pigs, cattle, and sheep.

New radiocarbon measurements of five goat bones placed them at between 7,300 and 6,900 years old.

By extracting and analyzing genetic material from several goat bones, two independent laboratories confirmed that the sequences that Taberlet’s group examined were uncontaminated, ancient DNA.

Comparisons of the ancient goat mitochondrial DNA with sequences of modern goat DNA revealed that the two Near Eastern lineages had inhabited the prehistoric French site at the same time.

Taberlet and his colleagues suspect that early farmers transported each line of goats into Europe along a separate westward route, one inland and the other running along the Mediterranean Sea.

A preference for moving goats long distances in ancient times makes sense (SN: 5/12/01, p. 294). Goats are the hardiest livestock species. They’re easy to transport by land or boat, and they willingly follow people.

The new data convincingly show the domestication of two ancient goat lineages at the same time somewhere in the Fertile Crescent region, remarks archaeobiologist Melinda A. Zeder of the Smithsonian Institution’s National Museum of Natural History in Washington, D.C.

Genetic studies of modern domestic sheep have revealed a pattern similar to that of goats, with three to four ancient lineages, Zeder notes. “This suggests that both sheep and goats moved together, as they do today, in mixed herds as they diffused out of the Near East,” she says.


Archaeological data suggest two distinct places of domestication: the Euphrates river valley at Nevali Çori, Turkey (11,000 bp), and the Zagros Mountains of Iran at Ganj Dareh (10,000). Other possible sites of domestication include the Indus Basin in Pakistan at (Mehrgarh, 9,000 bp) and perhaps central Anatolia and the southern Levant.

And, a DNA study on goats.

Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas

Helena Fernández*, Sandrine Hughes,,, Jean-Denis Vigne¶, Daniel Helmer||, Greg Hodgins**, Christian Miquel*, Catherine Hänni,, Gordon Luikart*,, and Pierre Taberlet*,

Goats were among the first farm animals domesticated, 10,500 years ago, contributing to the rise of the “Neolithic revolution.” Previous genetic studies have revealed that contemporary domestic goats (Capra hircus) show far weaker intercontinental population structuring than other livestock species, suggesting that goats have been transported more extensively. However, the timing of these extensive movements in goats remains unknown. To address this question, we analyzed mtDNA sequences from 19 ancient goat bones (7,300–6,900 years old) from one of the earliest Neolithic sites in southwestern Europe. Phylogenetic analysis revealed that two highly divergent goat lineages coexisted in each of the two Early Neolithic layers of this site. This finding indicates that high mtDNA diversity was already present >7,000 years ago in European goats, far from their areas of initial domestication in the Near East. These results argue for substantial gene flow among goat populations dating back to the early neolithisation of Europe and for a dual domestication scenario in the Near East, with two independent but essentially contemporary origins (of both A and C domestic lineages) and several more remote and/or later origins.