Category Archives: Anthropology

Taforalt man into the Sahara.

L’homme de Taforalt au Sahara, ou le problème de l’extension saharienne des Cromagnoïdes du Maghreb

The important discovery of a cro Magnon settlement in the Southernmost Sahara  dating to the Holocene brings new data on the morphological and geographical evolution of the Cro Magnon population of the Maghreb (Men of Mechta-Afalou-Taforalt). The great resemblance between the men of Taforalt and those of the Sahara (Hassi-el-Abiod, Mali) pose the problem of their origins. Was it a migration from the Maghreb at the beginning of the Holocence aided by favourable climate conditions or regional evolution from the regional Aterien stock mixing with the Cro Magnons of the Maghreb and the Sahara? The numerous climatic changes occurring in this part of the Sahara during the last 30,000 years could be an efficient evolutive promoter and can explain the morpholgical and cultural differences observed between the Sahara and Maghrebian series. However, what will happen later to African Cro magnids in the Maghreb and especially in the Sahara is still an open question.

 I’m not going to translate the whole thing, but it observes that the Mechtoids vanish about 7,0oo years ago (very latest site in the Sahara, but they are gone by 10,000 Bp at the coast when the Capsian culture arrives from the near east) when the proto- mediterranoids arrive, and they are not found in later sites. When I have a little more time I’ll make up a more comprehensive entry involving this and the other work on mechtoid populations and genetics that should explain their origins and relationships a bit more clearly. Please excuse my imperfect translation.

Conclusion

These new discoveries bring three new basic concepts; firstly, African Cro Magnids occupied a vast part of the North of  Africa of the end of Pleistocene until  the beginning of  the Holocene; secondly in spite of regional morphological characteristics, all Mechtoids belong to the same group; thirdly these facts suggest the existence of a common ancestor to these three populations and this ancestor could be represented, until there are other older discoveries, by the Aterian people.

Which I’d have to disagree with, as the stone tool cultures and genetics suggest an expansion from Lower Nubia/Egypt about 24k ago that spawned off the Mechtoid/Kebaran populations, which was roughly equal in terms of back-migrating Eurasian and Nubian-African ancestry. Except for the Taforalt population, which ADNA has shown was entirely Eurasian for mt DNA, and may have been the result of a migration southwards across the straits of Gibraltar about the time of the LGM (20k ago) mixing with the local Mechtoids.

Advertisements

Possible Neolithic cannibalism in Germany

This one  is all over the news today. At a site dating to 7,000 BP in Herxheim, Germany, they have found human remains that seem to bear the signs of being butchered for meat. While this isn’t pleasant, it’s not exactly unheard of from many locations around the world. But the scale, about 500 victims- possibly up to 1000, is unusual.

That’s a lot of corpses for a tiny Stone Age village. There were 10 buildings at most here in the last phase of the Linear Pottery culture of the European Neolithic Age around 5,000 to 4,950 years BC. The corpses weren’t native to this area, researchers have discovered. They came from all over Europe — from the area of what is now Paris, from the Moselle River 100 kilometers to the northwest and even from the Elbe River valley some 400 kilometers away. The broken bits of pottery lying between their ribs reveal their origin. It’s the so-called Linear Pottery that gave the entire population group its name: decorated with linear patterns pressed into the moist clay while it was being made.

 I’d recommend going to the this news article which has a lot of images and more information than I just can’t be bothered to type in right now. The ceramics were apparently from the Paris and Elbe valley about 400 kilometres away, showing how far people had come to get to the site. 

There’s a link to the magazine the full article was in (you need to subscribe).

There’s some disagreement as to whether the people were eaten, the remains seem to have been people in good health and not killed in battle, that had been brought to the region with ceramics that were broken at the site.  It’s quite possible this was some kind of religious behaviour involving de-fleshing of the bones rather than cannibalism. This behaviour only seems to have lasted for a 50 year time span.

Note: I will get around to clearing the comments backlog- I’m down to 200 now…be patient.

Neanderthals ‘had sex’ with modern man

Neanderthals ‘had sex’ with modern man

From an article in the Times

Modern humans and Neanderthals had sex across the species barrier, according to a leading geneticist who is overseeing a project to compare their genomes.

Professor Svante Paabo, director of genetics at the renowned Max Planck Institute for Evolutionary Anthropology in Leipzig, will shortly publish his analysis of the entire Neanderthal genome, using DNA retrieved from fossils. He aims to compare it with the genomes of modern humans and chimpanzees to work out the ancestry of all three species.

I can’t say I’m surprised to see this. Later (transitional) Neanderthals picked up modern human traits like chins and more complex burial rituals, and a few sets of remains do look hybrid. If you look at the more recent reconstructions such as ‘Wilma’ (from Nat geo), they don’t look massively different to modern humans.

In addition to this there are numerous DNA studies that suggest a low level on Neanderthal contribution to Europeans (5% or less seems the norm) even though Neanderthal mitochondrial DNA and Y chromosomes are absent.

Out of Africa again and again

Possible Ancestral Structure in Human Populations

Archaic admixture in the human genome

Detecting ancient admixture and estimating demographic parameters in multiple human populations

There are a few more, but you get the point.

From looking at the difference between Mesolithic and modern Europeans mt DNA, I know that it would be easy to lose a small minority contributor through drift, and it’s unlikely that (as a group being exterminated)  male Neanderthals would have made any kind of traceable contribution, as females may be absorbed from lower status groups, but males usually aren’t.

Theres also a  vid which mentions the subject by Prof Paabo on the subject on Youtube. I guess we’ll just have to wait and see.

We aren’t all the same- science is finding evidence of genetic diversity between populations as well as between individuals

Let’s celebrate human genetic diversity

Bruce Lahn and Lanny Ebenstein Nature, 8 October 2009

Science is finding evidence of genetic diversity among groups of people as well as among individuals. This discovery should be embraced, not feared, say Bruce T. Lahn and Lanny Ebenstein.

A growing body of data is revealing the nature of human genetic diversity at increasingly finer resolution. It is now recognized that despite the high degree of genetic similarities that bind humanity together as a species, considerable diversity exists at both individual and group levels (see box, page 728). The biological significance of these variations remains to be explored fully. But enough evidence has come to the fore to warrant the question: what if scientific data ultimately demonstrate that genetically based biological variation exists at non-trivial levels not only among individuals but also among groups? In our view, the scientific community and society at large are ill-prepared for such a possibility. We need a moral response to this question that is robust irrespective of what research uncovers about human diversity. Here, we argue for the moral position that genetic diversity, from within or among groups, should be embraced and celebrated as one of humanity’s chief assets.

The current moral position is a sort of ‘biological egalitarianism’. This dominant position emerged in recent decades largely to correct grave historical injustices, including genocide, that were committed with the support of pseudoscientific understandings of group diversity. The racial-hygiene theory promoted by German geneticists Fritz Lenz, Eugene Fischer and others during the Nazi era is one notorious example of such pseudoscience. Biological egalitarianism is the view that no or almost no meaningful genetically based biological differences exist among human groups, with the exception of a few superficial traits such as skin colour. Proponents of this view seem to hope that, by promoting biological sameness, discrimination against groups or individuals will become groundless.

We believe that this position, although well intentioned, is illogical and even dangerous, as it implies that if significant group diversity were established, discrimination might thereby be justified. We reject this position. Equality of opportunity and respect for human dignity should be humankind’s common aspirations, notwithstanding human differences no matter how big or small. We also think that biological egalitarianism may not remain viable in light of the growing body of empirical data.

Many people may acknowledge the possibility of genetic diversity at the group level, but see it as a threat to social cohesion. Some scholars have even called for a halt to research into the topic or sensitive aspects of it, because of potential misuse of the information. Others will ask: if information on group diversity can be misused, why not just focus on individual differences and ignore any group variation? We strongly affirm that society must guard vigilantly against any misuse of genetic information, but we also believe that the best defence is to take a positive attitude towards diversity, including that at the group level. We argue for our position from two perspectives: first, that the understanding of group diversity can benefit research and medicine, and second, that human genetic diversity as a whole, including group diversity, greatly enriches our species. 

Emerging understanding of human genetic diversity

Genetic diversity is the differences in DNA sequence among members of a species. It is present in all species owing to the interplay of mutation, genetic drift, selection and population structure. When a species is reproductively isolated into multiple groups by geography or other means, the groups differentiate over time in their average genetic make-up.

Anatomically modern humans first appeared in eastern Africa about 200,000 years ago. Some members migrated out of Africa by 50,000 years ago to populate Asia, Australia, Europe and eventually the Americas. During this period, geographic barriers separated humanity into several major groups, largely along continental lines, which greatly reduced gene flow among them. Geographic and cultural barriers also existed within major groups, although to lesser degrees.

This history of human demography, along with selection, has resulted in complex patterns of genetic diversity. The basic unit of this diversity is polymorphisms — specific sites in the genome that exist in multiple variant forms (or alleles). Many polymorphisms involve just one or a few nucleotides, but some may involve large segments of genetic material. The presence of polymorphisms leads to genetic diversity at the individual level such that no two people’s DNA is the same, except identical twins. The alleles of some polymorphisms are also found in significantly different frequencies among geographic groups. An extreme example is the pigmentation gene SLC24A5. An allele of SLC24A5 that contributes to light pigmentation is present in almost all Europeans but is nearly absent in east Asians and Africans.

Given these geographically differentiated polymorphisms, it is possible to group humans on the basis of their genetic make-up. Such grouping largely confirms historical separation of global populations by geography. Indeed, a person’s major geographic group identity can be assigned with near certaintly on the basis of his or her DNA alone (now an accepted practice in forensics). There is growing evidence that some of the geographically differentiated polymorphisms are functional, meaning that they can lead to different biological outcomes (just how many is the subject of ongoing research). These polymorphisms can affect traits such as pigmentation, dietary adaptation and pathogen resistance (where evidence is rather convincing), and metabolism, physical development and brain biology (where evidence is more preliminary).

For most biological traits, genetically based differentiation among groups is probably negligible compared with the variation within the group. For other traits, such as pigmentation and lactose intolerance, differences among groups are so substantial that the trait displays an inter-group difference that is non-trivial compared with the variance within groups, and the extreme end of a trait may be significantly over-represented in a group.

Several studies have shown that many genes in the human genome may have undergone recent episodes of positive selection — that is, selection for advantageous biological traits. This is contrary to the position advocated by some scholars that humans effectively stopped evolving 50,000–40,000 years ago. In general, positive selection can increase the prevalence of functional polymorphisms and create geographic differentiation of allele frequencies. 

A news worthy article, that won’t probably get the attention it deserves in the general media. I’ve noticed over the past few years more and more papers are being published along these lines, and I’d just like to applaud them for having the courage to put this in print, as this kind of published work (observing what are essentially racial differences) can really endanger your career. Most notable was this …

It is now recognized that despite the high degree of genetic similarities that bind humanity together as a species, considerable diversity exists at both individual and group levels

Which really goes counter to what it generally presented to the public in those cosy channel four and BBC documentaries like ‘In the blood’  and ‘ Race, the last taboo’. Prof. Jones will not be a happy man when he reads this. Also worthy of attention was this (condensed, it’s in the text as a whole) …

Biological egalitarianism is the view that no or almost no meaningful genetically based biological differences exist among human groups …..We believe that this position, although well intentioned, is illogical and even dangerous…We also think that biological egalitarianism may not remain viable in light of the growing body of empirical data.

So there you go. We aren’t all the same. I’ve believed for the past seven years, ever since I started to show a deeper interest in anthropology and genetics, the ‘no such thing as race’ paradigm was driven by (well meant) egalitarianism ideology and not fact. If there’s no such thing as race, there can’t be racial differences and, ergo, no racism. I think that Lahn’s and Ebenstein’s hopes for a grown up acceptance of between-group differences may be unfulfilled, as the average human just isn’t that reasonable.

Mitochondrial DNA and Y-Chromosome Variation in the Caucasus

Mitochondrial DNA and Y-Chromosome Variation in the Caucasus

We have analyzed mtDNA HVI sequences and Y chromosome haplogroups based on 11 binary markers in 371 individuals, from 11 populations in the Caucasus and the neighbouring countries of Turkey and Iran. Y chromosome haplogroup diversity in the Caucasus was almost as high as in Central Asia and the Near East, and significantly higher than in Europe. More than 27% of the variance in Y-haplogroups can be attributed to differences between populations, whereas mtDNA showed much lower heterogeneity between populations (less then 5%), suggesting a strong influence of patrilocal social structure. Several groups from the highland region of the Caucasus exhibited low diversity and high differentiation for either or both genetic systems, reflecting enhanced genetic drift in these small, isolated populations. Overall, the Caucasus groups showed greater similarity with West Asian than with European groups for both genetic systems, although this similarity was much more pronounced for the Y chromosome than for mtDNA, suggesting that male-mediated migrations from West Asia have influenced the genetic structure of Caucasus populations.

An older paper, but one I hadn’t taken a look at.

Unfortunately there isn’t as much detail on the mt DNA.

From one long ago read text, I can remember that one North Caucasus late neolithic site had a tendency to have Mediterranean male crania with the more robust local females. This could support that  population movements into the area from the Iran/Turkey area (birthplace of the Neolithic) may have been male lead, which might give a clue as to how each the Caucasus population has such a heterogenous Y chromosome profile.

An Odontometric Investigation of Canary Islander Origins

An Odontometric Investigation of Canary Islander Origins 2004

Joel D. Irish* and Brian E. Hemphill** *Department of Anthropology, University of Alaska, Fairbanks, AK 99775.*Department of Sociology & Anthropology, California State University, Bakersfield, CA 93311

ABSTRACT Attempts by anthropologists to account for the peopling of the Canary Islands have led to theories that call for one, two, and even four immigration events. However, most agree the Canary Island Guanche are biologically closest to Berbers from Morocco and Algeria. Genetic contributions from Arabs, Romans, and Carthaginians have also been proposed. An earlier study by Irish using Penrose analysis of odontometric data in samples of Guanche, Shawia and Kabyle Berbers, and Bedouin Arabs supports many of these proposed genetic relationships. The present investigation expands upon this earlier work by adding samples of Carthaginians, Egyptians, and Nubians, and by using tooth size apportionment analysis, a more robust statistical approach for assessing inter-sample differences in the distribution, or allocation, of tooth size in the maxillary and mandibular dental arcades. The analysis yielded three components that account for >80% of the total variance. Cluster analysis and three-dimensional ordination of group component scores provide additional insight into Canary Island/North African relationships. Except for one early Nubian sample, the Guanche exhibit some measure of affinity to all others. However, they are most like Berbers and Carthaginians. These results suggest that Canary Islanders belong to a greater North African gene pool, yet show the closest affinities to Northwest Africans—which corroborates earlier dental and nondental findings.

Something published a  few years ago that I finally located the text for. The conclusion isn’t exactly a surprise; that Canary Islanders were part of the north African population as ADNA has shown that already. Its not surprising to see Lower Nubians also grouping with the North Africans for teeth, as this was true generally for mDNA and cranial shape, although it shows much more distance to the upper Nubian Soleb sample (18th Dynasty Pharonic Nubians, 1575-1380 BC). It says ‘The Soleb sample is characterized by the largest teeth of all samples, as well as broad buccolingual anterior tooth diameters and large mandibular molars relative to the  to the maxillary counterparts’ which I believe would make them more typical of sub Saharan  Africans (dentition is not my strong point).

The conlusion..

First, the Canary Island Guanche show closest dental affinities to Northwest Africans, relative to other samples of various ages. Second, the pattern of phenetic affinities possessed by the Guanche suggest that some degree of biological relatedness extends beyond the adjacent mainland to Nubians and Egyptians in Northeast Africa.

 The pdf also has on it ‘An Artificial Human Tooth from the Neolithic Cemetery at Gebel Ramlah, Egypt’ by Irish.

An Examination of Nubian and Egyptian biological distances: Support for biological diffusion or in situ development?

An Examination of Nubian and Egyptian biological distances: Support for biological diffusion or in situ development?
Homo. 2009;60(5):389-404. Epub 2009 Sep 19.

Godde K.
Department of Anthropology, University of Tennessee, Knoxville, 250 South Stadium Hall, Knoxville, TN 37996, USA. kgodde@utk.edu

Many authors have speculated on Nubian biological evolution. Because of the contact Nubians had with other peoples, migration and/or invasion (biological diffusion) were originally thought to be the biological mechanism for skeletal changes in Nubians. Later, a new hypothesis was put forth, the in situ hypothesis. The new hypothesis postulated that Nubians evolved in situ, without much genetic influence from foreign populations. This study examined 12 Egyptian and Nubian groups in an effort to explore the relationship between the two populations and to test the in situ hypothesis. Data from nine cranial nonmetric traits were assessed for an estimate of biological distance, using Mahalanobis D(2) with a tetrachoric matrix. The distance scores were then input into principal coordinates analysis (PCO) to depict the relationships between the two populations. PCO detected 60% of the variation in the first two principal coordinates. A plot of the distance scores revealed only one cluster; the Nubian and Egyptian groups clustered together. The grouping of the Nubians and Egyptians indicates there may have been some sort of gene flow between these groups of Nubians and Egyptians. However, common adaptation to similar environments may also be responsible for this pattern. Although the predominant results in this study appear to support the biological diffusion hypothesis, the in situ hypothesis was not completely negated.

Results

The Mahalanobis D2 analysis uncovered close affinities between Nubians and Egyptians. Table 3 lists the Mahalanobis D2 distance matrix. As there is no significance testing that is available to be applied to this form of Mahalanobis distances, the biodistance scores must be interpreted in relation to one another, rather than on a general scale. In some cases, the statistics reveal that the Egyptian samples were more similar to Nubian samples than to other Egyptian samples (e.g. Gizeh and Hesa/Biga) and vice versa (e.g. Badari and Kerma, Naqada and Christian). These relationships are further depicted in the PCO plot (Fig. 2). Aside from these interpopulation relationships, some Nubian groups are still more similar to other Nubians and some Egyptians are more similar to other Egyptian samples. Moreover, although the Nubian and Egyptian samples formed one well-distributed group, the Egyptian samples clustered in the upper left region, while the Nubians concentrated in the lower right of the plot. One line can be drawn that would separate the closely dispersed Egyptians and Nubians. The predynastic Egyptian samples clustered together (Badari and Naqada), while Gizeh most closely groups with the Lisht sample. The first two principal coordinates from PCO account for 60% of the variation in the samples. The graph from PCO is basically a pictorial representation of the distance matrix and interpretations from the plot mirror the Mahalanobis D2 matrix.
Discussion

The clustering of the Nubian and Egyptian samples together supports this paper’s hypothesis and demonstrates that there may be a close relationship between the two populations. This relationship is consistent with Berry and Berry (1972), among others, who noted a similarity between Nubians and Egyptians. If Nubians and Egyptians were not biologically similar, one would expect the scores to separately cluster by population (e.g. Nubians compared to Nubians would have small biological distances, and Nubians compared to Egyptians would have high biological distances). However, this was not the case in the current analysis and the results suggest homogeneity between the two populations. Many of the samples that are similar to one another, between the two populations, are separated by great amounts of time (e.g. Kerma and Badari). These similarities over time make sense because, as Konigsberg (1990) asserted, as time elapses, related groups become more genetically similar. In order to explicate the meaning behind all of these findings, the results here must be tempered by the DNA evidence. Both mtDNA (Krings et al., 1999) and Y-Chromosome data (Hassan et al., 2008; Keita, 2005; Lucotte and Mercier, 2003) indicate that migrations, usually bidirectional, occurred along the Nile. Thus, the osteological material used in this analysis also supports the DNA evidence.

Interpretation of the results framed by several of the groups’ histories helps to elucidate the subtle relationships depicted in the PCO scatter plot. The predynastic sample from Badari occupies a complex position in Egyptian history. The Badarians are Egypt’s oldest agriculturalists and produced some of the earliest known pottery (Hassan, 1986) that predated state formation in Egypt. Badarian crania, in comparison to dynastic groups, are slight and less robust than their later counterparts (Angel, 1972; Morant, 1935; Stoessiger, 1927). Stoessiger (1927) likened the gracile nature of the Badarians to the gracile nature of the people from Naqada, but she pointed out that the Badarians are more prognathic. On this basis, many have postulated that the Badarians are relatives to South African populations (Morant, 1935 G. Morant, A study of predynastic Egyptian skulls from Badari based on measurements taken by Miss BN Stoessiger and Professor DE Derry, Biometrika 27 (1935), pp. 293–309.Morant, 1935; Mukherjee et al., 1955; Irish and Konigsberg, 2007). The archaeological evidence points to this relationship as well. (Hassan, 1986) and (Hassan, 1988) noted similarities between Badarian pottery and the Neolithic Khartoum type, indicating an archaeological affinity among Badarians and Africans from more southern regions. Furthermore, like the Badarians, Naqada has also been classified with other African groups, namely the Teita (Crichton, 1996; Keita, 1990), while the Gizeh sample clustered with the Maghreb and Sedment (Dynasty IX Egyptians) (Keita, 1990).
Nutter (1958) noted affinities between the Badarian and Naqada samples, a feature that Strouhal (1971) attributed to their skulls possessing “Negroid” traits. Keita (1992), using craniometrics, discovered that the Badarian series is distinctly different from the later Egyptian series, a conclusion that is mostly confirmed here. In the current analysis, the Badari sample more closely clusters with the Naqada sample and the Kerma sample. However, it also groups with the later pooled sample from Dynasties XVIII–XXV. The unusual grouping of Badari, Naqada, Kerma, and the later Dynastic pooled sample may have been a product of the mixed nature of the pooled sample. The effects of pooled samples have been demonstrated in Nubians by obscuring relationships and creating a falsely close affinity between it and the samples it clusters with (Godde, 2009a). Moreover, affinities among the Badarian, Naqada, and Kerma samples have been revealed by other authors (Keita, 1990; Nutter, 1958) and it is no surprise that this relationship exists in the data here.

Relationships among Badari, Naqada, and Kerma have not always been overt in the skeletal data. Berry et al. (1967) concluded from their nonmetric analysis that their Badarian sample differed significantly from Naqada and Kerma, but was closely related to the Gizeh sample. Their study included the same samples as this analysis, but yielded results that are different from the current study and the craniometric research. Berry et al. (1967) employed a completely different range of statistics, which may account for the difference between the two conclusions. However, Berry and her coauthors also noted homogeneity across all the Egyptian groups, including Naqada and those that pre- and post-date the sample. This is indeed the case here, as is evidenced in the PCO plot; the Egyptians appear to be relatively homogeneously grouped. Some Badarian crania also classified well with the Gizeh sample (Keita, 1990).

The close clustering of Badari and Naqada with Kerma exemplifies the possible relationship of Nubians to Egyptians. Originally, the Nubian A-Group was thought to be Badarian in origin (Reisner, 1910). However, later work (Adams, 1977; Godde, 2009a) established that the A-Group were actually Nubian. Comparisons of C-Group and Pan-Grave Nubians to Badari and Hierakonpolis separate Badari from the other samples, indicating no biological affinities with these earlier Nubian groups (Godde, 2009b). The reoccurring notation of Kerma affinities with Egyptian groups is not entirely surprising. Kerma was an integral part of the trade between Egypt and Nubia. Collett (1933) concluded that Kerma was originally inhabited by Egyptians with neighboring Nubian settlements. Her investigation of the site pointed towards continuous Egyptian occupation of some sort at the site throughout the Kerma time period. This continued presence at Kerma is an optimal condition for gene flow to occur between the two populations.

Nubian groups have also been scrutinized as to their relationship with other Nubians. Both the Meroitic and X-Group were originally postulated to be foreign peoples migrating into Lower Nubia (Adams, 1968; Nielsen, 1970). These ideas were based on changes in pottery around the beginning of each of the respective time periods. However, the archaeological evidence actually showed slow change in form over time (Adams, 1977) and the biological evidence demonstrated a similar trend in the skeletal data (e.g. Godde, in press; Van Gerven et al., 1977). These conclusions negate the possibility of invasion or migration causing the shifts in time periods. The results in this study are consistent with prior work; the Meroites and X-Group cluster with the remaining Nubian population and are not differentiated.

Despite the biological similarities between the two populations, the Nubians appear relatively homogeneous. The homogeneity is consistent with Carlson and Van Gerven’s (1979) in situ hypothesis, but contradicts the findings of Buzon (2006). Buzon (2006) found a high level of heterogeneity in the Nubian samples she examined, including individuals from Kerma and the C-Group. Moreover, the Egyptian samples in her study were homogeneous overall, consistent with Berry et al. (1967) and the results in this paper. However, the levels of homogeneity appear to be similar within Nubians and within Egyptians in this study. The differences between this research and Buzon’s (2006) work may be related to the statistics used. Buzon’s (2006) goal was not to look at biological affinities; rather, she was trying to establish identity among her individuals by associating it with archaeological material. While this paper used a biological distance approach to investigate past population relationships, her paper used factor analysis, principal components, and a least squares regression. Although these (hers and those used here) statistics all have a solid methodological basis, they measure population relationships in two different manners and the results between them are not entirely comparable.

Gene flow may account for the homogeneity across these Nubian and Egyptian groups and is consistent with the biological diffusion precept. Small geographic distances between groups allow for the exchange of genes. One of the Nubian groups in this analysis is located in Upper Egypt (Hesa/Biga), near Egyptian occupation, and contact between the two populations may have been commonplace. Specifically, Nubians were often captured and enslaved by Egyptians to build pyramids, or employed by the Egyptian army (Trigger, 1976). Occasionally, Nubians were even directed to fight other Nubians as part of their duties as troops (Trigger, 1976). Moreover, some groups of Nubians allied with the Egyptians for the conquest of Nubian areas, primarily during Dynasty I (Trigger, 1976). Furthermore, as mentioned earlier, trade between Nubians and Egyptians flourished at Kerma and Meroe, during the time periods named after the sites, and enabled contact for potential gene flow. As a result of their respective histories, the multitude of interactions between them, geographic locations, and their biological composition, it appears that gene flow was possibly occurring between the two populations.

The similarities uncovered by this study may be explained by another force, adaptation. As stated above, the results appear to support the biological diffusion hypothesis because the Nubian and Egyptian groups are biologically similar. However, this resemblance may be indicative of a common adaptation to a similar geographic location, rather than gene flow. Carlson and Van Gerven (1979) stated this idea in reference to common adaptations of Nubian, Paleolithic, and aboriginal Australian populations. Additionally, Carlson (1976), Prowse and Lovell (1995), Van Gerven (1982), and Van Gerven et al., 1977 D. Van Gerven, G. Armelagos and A. Rohr, Continuity and change in cranial morphology of three Nubian archaeological populations, Man 2 (1977), pp. 270–277. View Record in Scopus | Cited By in Scopus (9)Van Gerven et al. (1977) also recognized this form of natural selection as a mechanism for in situ biological change; Egypt and Nubia have similar terrain and climate. Because of the similarity between and the overlapping of the two territories that would require similar adaptations to the environment, common adaptation cannot be discounted.

Sample size may have unduly influenced the results in this analysis. Four of the samples were represented by less than 30 individuals, while several of the remaining samples numbered close to 200 individuals. Moreover, only a small number of groups (six) from each population were examined in this study. Observations of more and larger population samples may produce different findings.

In summation, a portion of the in situ hypothesis in Nubians is supported in this paper, namely homogeneity. Gene flow appears likely between the Egyptians and Nubians, although common adaptations to a similar environment may have also been a factor in their cranial similarities. This study does not rule out the possibility that in situ biological evolution occurred at other times not represented by the samples in this analysis. Further research should incorporate more populations the Nubians were in contact with, to further shed light on Nubian population structure. Additionally, Konigsberg’s (1990) spatial–temporal isolation model should be applied to the dataset here to further explicate the results.

 

One for the records, as I can’t locate the full text at the moment. Not unsurprising to see some relationship between Nubians and Egyptians as they were right next door and the Badari and Nubians appeared to be closely related before state formation brought a lot of Lower Egyptians southwards. From other studies I’m guessing the relationship is due to the pre-dynastic Nubian/Badarian relationship. I’m amused to see this on Egyptsearch as ‘proof’ the Egyptians were black. I’m guessing they didn’t read it through- but thanks for posting it guys. As always forgetting that Nubians actually had about 60% Eurasian ancestry, same as the modern, so thinking this is proof of a ‘black’ Egypt is amusing. Still no response from them as to how Egyptians managed to swap race when their Y chromosomes show that only about 5% overall Eurasian historic immigration is possible. Hmm.

Still having so issues with my MS at the moment, but I’m slowly getting back to myself. I will respond to all comments eventually. Patience.